
Threats to Privacy in the Forensic Analysis of
Database Systems

Patrick Stahlberg, Gerome Miklau, and Brian Neil Levine
Department of Computer Science

University of Massachusetts, Amherst
{patrick | miklau | brian}@cs.umass.edu

ABSTRACT
The use of any modern computer system leaves unintended
traces of expired data and remnants of users’ past activities.
In this paper, we investigate the unintended persistence of
data stored in database systems. This data can be recovered
by forensic analysis, and it poses a threat to privacy.

First, we show how data remnants are preserved in data-
base table storage, the transaction log, indexes, and other
system components. Our evaluation of several real database
systems reveals that deleted data is not securely removed
from database storage and that users have little control over
the persistence of deleted data.

Second, we address the problem of unintended data re-
tention by proposing a set of system transparency criteria:
data retention should be avoided when possible, evident to
users when it cannot be avoided, and bounded in time.

Third, we propose specific techniques for secure record
deletion and log expunction that increase the transparency
of database systems, making them more resistant to forensic
analysis.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational Databases; H.2.7 [Database
Administration]: Security, integrity, and protection; K.6.5
[Security and Protection]: Unauthorized access

General Terms
Security, Reliability

Keywords
Privacy, Forensics, Transparency

1. INTRODUCTION
Preserving a historical record of activities and data is crit-

ical for a wide range of applications. Historical data can be
used to recover after system failure, to analyze past events
after a breach, or to audit compliance with security policies.
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The intentional preservation of history can thus serve a good
purpose, and inexpensive storage now makes it possible.

Conversely, in many scenarios, retaining a history of past
data or operations can pose a serious threat to privacy and
confidentiality. For example, in large institutions and en-
terprises, systems that retain data for too long risk un-
wanted disclosure, for example by security breach or by sub-
peona. Moreover, retention can violate privacy regulations
like HIPAA [24], FERPA [16], or the E.U. privacy directive,
each of which mandate the timely removal of data.

Modern computer systems unintentionally preserve his-
tory, and it can be surprisingly difficult to remove traces
of the past from computer systems. Without precise control
over data destruction, unwelcome remnants of past data can
become a serious problem. For example, a wealth of sensi-
tive data, including financial and medical records, were re-
covered from decommissioned hard drives [18]. Digital doc-
uments published on the Web have been found to include
sensitive content believed to be deleted [15, 6]. Email was
used in court cases against Enron employees and released to
the public [22, 40], some of which was contained in “deleted
items” folders [26]. The value of appropriately “forgetting
history” to preserve privacy is increasingly being recognized
[37].

In this paper, we examine the privacy and confidentiality
threats in existing database systems resulting from the in-
advertent preservation of historical data. Database systems
make numerous redundant copies of sensitive data items in
table storage, indexes, logs, materialized views, and tempo-
rary relations. The table storage manager makes copies of
database records within allocated space, and it also pushes
copies of data records into unallocated file system space.
When data is deleted, it is not destroyed and often persists
on disk. Data owners currently have little control over these
operations. They cannot say with certainty where sensitive
data may end up, whether it is destroyed after deletion, or
how long it will persist.

These remnants of past data and activities are revealed
through forensic analysis. Forensic analysis [10] is an emerg-
ing area of computer security focused on the collection and
analysis of data recovered from computer systems. The goal
is to validate hypotheses about past activities in a manner
that is presentable in court or similar forums. When forensic
analysis is performed by authorized investigators it can be
a valuable tool, helping to hold individuals or systems ac-
countable for malicious or mistaken actions. But when tools
and methods of forensic analysis are used by an unautho-
rized party, it threatens privacy.



The goal of our larger research program is to design data-
base systems that allow users to appropriately balance the
competing needs for privacy and accountability. In settings
that require it, systems should support accountability by ef-
ficiently retaining a historical record of data and operations.
At the other extreme, where privacy concerns take prece-
dence, database systems should be memoryless and avoid
unwanted history.

The present work is a first step in this program, and it fo-
cuses exclusively on privacy. We investigate the unintended
retention of data in database systems, and we seek to build a
database system that is resistant to unwanted forensic anal-
ysis. After a brief background on forensics and related work
in Section 2, we present the following contributions:

• First, we formalize the problem of unintended recovery
by proposing a set of desiderata to be satisfied by an
ideal forensically transparent system. In brief, all data
retained by the system should be accessible through
a legitimate interface, and it should not be possible
to recover hidden data through inspection of system
state. (Section 3)

• Second, we investigate the forensic recoverability of
data from database systems. We show how data rem-
nants are preserved in database table storage, the trans-
action log, and indexes. We measure the persistence
of deleted data in real systems under simulated query
workloads. (Sections 4 and 5)

• Third, we propose changes to system internals that
can significantly reduce unintended data retention in
databases with little or no performance cost. In partic-
ular, we implement secure record deletion in MySQL,
and we propose a method for the timely removal of
data from the transaction log. (Section 6)

Several example scenarios can result in unintended data
retention, all of which can benefit from our contributions.
For example, as we stated above, businesses can uninten-
tionally violate privacy regulations by leaving data in table
or file storage. Adversaries that investigate databases re-
covered from lost or stolen computers can reveal sensitive
information that was thought to be deleted. We also note
that conversely, authorized investigators may find our re-
sults useful in recovering data from equipment subpoenaed
or seized from a crime scene, or simply in situations where
company policy has been violated.

In addition, while our primary focus is on conventional
client-server databases, we note that database storage is
increasingly embedded into a wide range of common appli-
cations for persistence. Embedded database libraries like
BerkeleyDB [2] and SQLite [38] are used as the underlying
storage mechanisms for email clients, web browsers, LDAP
implementations, and Google Desktop, all of which store
privacy-sensitive data. For example, message headers and
time stamps for messages believed to be deleted can be found
on disk in embedded databases1. As another example, Fire-
fox 2.0 allows applications to store data that persists across
sessions in an SQLite database. This storage is a sophis-
ticated replacement for cookies, and will surely be a prime
resource for forensic investigators to recover inadvertently
retained deleted data.

1Apple’s Mail.app stores all cached email headers in an
SQLite database; see ∼/Library/Mail/Envelope Index on
Mac OS X.

The vulnerability to forensic analysis for embedded data-
base storage is particularly important because it impacts
everyday users of desktop applications, and because embed-
ded database storage is harder to protect from such investi-
gation.

2. FORENSICS BACKGROUND AND
RELATED WORK

Existing work in computer forensics has shown that in
many operating systems and applications a deletion oper-
ation does not physically remove data. Researchers have
studied the retention and recovery of expired data in file sys-
tems [9, 19, 17, 18], random access memory [11, 12, 19], and
such applications as web browsers and document files [17].
Forensic tools like the Sleuth Toolkit [8] and EnCASE Foren-
sic [14] are commonly used by investigators to recover data
from computer systems. These tools are sometimes able to
interpret common file types but, to our knowledge, none cur-
rently support forensic analysis of database files other than
as hexidecimal dumps.

Military and intelligence agencies have set forth rigorous
policies for the destruction of sensitive electronic data [29,
13]. A basic technique for the secure deletion of data is
overwriting stored bytes with zeroes or random sequences.
Guttman first observed that even overwritten bytes can some-
times be recovered from hard drives by magnetic analysis
[23]. That possibility is increasingly unlikely with modern
disks [3, 17].

Deletion through overwriting can be expensive, particu-
larly for large files. A Linux file system with a secure dele-
tion feature was proposed that performs asynchronous over-
writing of deleted blocks to avoid the cost of synchronous
overwriting upon deletion [3]. Privacy-conscious computer
users can remove remnants stored on disk by using a vari-
ety of free or commercial tools to securely remove deleted
files. Limitations of popular commercial tools have been de-
scribed in a recent evaluation [20]. Importantly these tools
securely remove deleted data from the file system; they very
rarely address the persistence of data in applications.

Secure removal of data can also be accomplished by stor-
ing data in encrypted form and removing the decryption key
(usually by overwriting). This technique was first used for
efficient simultaneous removal of data from files and backup
logs [5]. Perlman has recently proposed the design of a
trusted service that would ensure timely expiration of email
messages using key disposal [32]. A combination of overwrit-
ing and specialized cryptographic techniques were proposed
for secure deletion in journaling file systems [33].

Attention to forensics in the database community has fo-
cused on enabling forensic investigation — for example by
archiving data or auditing system behavior in a reliable way
— as opposed to our goal here of minimizing data retention.
Snodgrass et al. propose techniques for tamper detection and
systematic analysis of audit logs [42, 31], and Goodrich et
al. studied accurate detection of tampering in index struc-
tures [21]. The unintended retention of sensitive data in
databases has not been studied, to our knowledge.

The role of encryption
While encryption has an important role in resisting foren-
sic analysis, it does not provide an easy or immediate solu-
tion for database systems. Using an underlying encrypted



filesystem can avoid some forensic threats and can be effec-
tive for thwarting investigations of file systems. However,
for the efficient removal of data in databases the granular-
ity of data blocks that are encrypted (i.e., the association
of keys to blocks of data) should match the granularity of
data destruction. Such fine-grained encryption, perhaps as-
sociating keys with each record, implies severe performance,
storage, and key management challenges. A further prob-
lem with encryption over an entire file system is that keys
are often available to investigators; e.g., keys can be com-
promised, or users can be compelled by law to turn over
keys. For databases operated by a large company, many
users may have access to encryption keys or they will be
stored in company files.

In Section 6, we show where in a database system the
judicious use of encryption is most beneficial for resisting
the threats considered here.

3. CRITERIA FOR SYSTEM
TRANSPARENCY

The threats to privacy and confidentiality that we study
in this paper all result from unintended retention of data in
lower storage layers, where data is accessible through inter-
faces that are not controlled by the database. For example,
a record deleted by a user and no longer accessible through
the SQL interface can still be recovered from the filesys-
tem. Anyone with access to these lower-layer interfaces can
read data that was unintentionally retained. In this sec-
tion we formalize this threat and introduce terminology used
throughout the paper.

A database system can be regarded as providing a set of
services that allow users and administrators to access stored
records and perform operations on them in well-defined ways.
For example, the SQL query processor is such a service, and
so are the recovery and backup functions. All legitimate ac-
cess to data in the database system is part of some service.

If a service needs a certain database record in order to
function properly, the service creates a purpose for the record
to exist. We call every record that has such a purpose an
active record. A record that exists in the database is clearly
active, but a copy of a deleted record in the transaction log
is also active if it has a purpose (e.g. it may be required
for concurrency control). Naturally, a properly functioning
database system must retain all active records.

Services are comprised of operations that can change or
create active records, or remove the purpose of active records.
In the latter case, we say that the records become expired.
For example, a record becomes expired when it is deleted,
and when there is no combination of operations left that
would ever use this record again.

An expired record is not needed for any aspect of the
proper operation of the database system. We use the term
removal to refer to the secure destruction of data. Exam-
ples of proper removal include overwriting the record or de-
stroying the key if the record is encrypted. Mere restric-
tion of access to a record, or placement on a free list, does
not constitute removal. Throughout this paper, we con-
sider a single basic overwriting operation to be sufficient
for removal. As mentioned in Section 2, it may be possi-
ble to recover overwritten data from the physical surface of
the disk, but in modern hard drives this is extremely un-
likely.

Records that are expired but not removed, are recoverable
from the hard disk. We call such data slack data, and it can
appear in different forms. In an extreme but not uncommon
case, a record can be fully recoverable. In other cases it
might be only partially recoverable; for example when part
of the record has been overwritten. Another factor that
discriminates slack data is the location where it is stored. If
the data is located in a file in use by the database system, we
call it database slack, or DB-slack. If the data location is no
longer allocated to a file, but it is still recoverable from the
system, we call it file system slack, or FS-slack. Note that
DB-slack and FS-slack are equivalent if the database uses
raw disks or disk partitions as underlying storage medium.

Slack data can also appear as other artifacts if data struc-
tures like indexes, or unique identifiers used by the system,
disclose expired metadata such as the length of records or
the order of events that led to the current state of the data-
base.

3.1 Threat model
Existing security threats make it impossible to ensure that

users will be limited to the intended interface provided by
the database system. We therefore consider an adversary
with unrestricted access to storage on disk. This models the
capabilities of a system administrator, a forensic investiga-
tor, a hacker who has gained privileges on the system, or an
adversary who has breached physical security. We assume
the attacker has access to the disk at some specific time t.
Our goal is to prevent an adversary from retrieving from the
system records that are expired as of time t.

3.2 Forensic transparency desiderata
We will see in Sections 4 and 5 that such an adversary

is often capable of recovering parts of the expired data of
current database systems. This means that the database
system provides an unreliable view of the actual stored con-
tents of the system. Users intend to remove data from the
system, but it persists against their will and without their
knowledge for an unknown period of time. Such a discon-
nect between the user interface and actual system behavior
can have serious implications for privacy.

It is therefore desirable for a database to operate in a
forensically transparent way. To determine the extent to
which a database system is forensically transparent, we pro-
pose a set of desiderata. A database system is forensically
transparent if it satisfies all three desiderata.

1. Clarity: The impact of each operation on the state of
records (i.e active or expired) is clear to the user.

2. Purposeful retention: Only active records should be
retained by the database.

3. Complete removal: Expired records must be removed
by the system within a short, fixed time from when
they become expired. In other words, there must be a
small upper bound on the time that slack data exists
in the database.

When these desiderata are satisfied, it will be easy for the
user of a database system to determine and control which
data are retained: it is clear which data are active, and the
database guarantees that expired data is removed quickly.
There is a small upper bound on the retention of expired
data to allow for performance in the operation of the data-
base system. Existing systems fail to meet these desiderata,
as we show in the following sections.
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Figure 1: Illustration of table storage for four states of a database undergoing insertions, deletions, and table
reorganization (or vacuum).

4. FORENSIC ANALYSIS OF DATABASE
COMPONENTS

In this section, we detail why forensic recoverability of
data is possible in table storage, indexes, and the transaction
log. We explain the reasons for retention of expired data,
how deletion is performed, and trace the lifetime of data
items. The consequences of this behavior for real database
systems are investigated experimentally in Section 5 with an
emphasis on table storage.

4.1 Forensic analysis of table storage
Tables in a database system are stored in paged files, and

many records usually share the storage space of one page.
Different database systems may vary on how free space in
table storage is recorded and allocated, whether a sort or-
der is maintained, and more. However, many of the basic
properties of table storage relevant to forensic analysis were
consistent across the systems we studied (see Section 5).

In most cases, deletion of records is accomplished by set-
ting a deletion bit — the data is not removed and is fully
recoverable. The space occupied by the record is freed and
may be reused by records inserted in the future. The reuse
of freed space for a newly inserted record depends on at least
two factors: whether the new record fits in the free space
and whether a sort order is imposed on the table.

Because pages in table storage become fragmented over
time, there is a table reorganization command (referred to
here as vacuum) executed periodically by the database ad-
ministrator. It improves storage performance, but it is often
time-consuming. When vacuum executes, in addition to re-
organizing records within and across pages, the size of the
file used for table storage may be reduced, returning space
to the file system. All systems we examined returned space
to the file system without completely removing data. This
means copies of database records are moved to unallocated
file system space and remain recoverable. The following sim-
plified example illustrates table storage and the main factors
that contribute to data retention:

Example 4.1 Database table storage, undergoing a se-
quence of operations, illustrated in Figure 1.

1. State (1) shows six active records, occupying most
of the space allocated to table storage.

2. After deletion of records t3 and t5, space is freed
but the data is still fully recoverable, as shown in
State (2).

3. Next, record t7 is inserted, utilizing free space and
overwriting the recoverable t3 from above. In addi-
tion, two more deletions occur: t1 and t4, resulting
in state (3).

4. In the next step, the vacuum procedure executes.
It reorganizes the active records (t2, t7, t6), and re-
duces the space allocated to the database file, as
shown in (4). This leaves previously deleted record
t5 and a copy of active record t6 in unallocated file
system space. 2

Updated records are not included in the example. When
records have variable-length attributes, an update to a record
may replace one or more attribute values with smaller at-
tribute values. In this case, the table storage algorithm will
perform the update in-place, overwriting attributes in the
original record. This results in partially recoverable records,
leaving the tail of prior data recoverable. If variable-length
attributes are updated with larger values, an update in-place
is not possible. The new record will be recorded in the next
available free space, while the original record is logically
deleted, resulting again in recoverable data.

The lifetime of data in table storage
Due to the behavior described above, data in table stor-
age has a complex lifetime. Recalling the terms defined in
Section 3, we can identify active and expired records in the
database. An insertion creates an active record, a deletion
changes a record from being active to being expired. For
simplicity, we assume an update to any attribute in a record
to be equivalent to a deletion followed by an insertion, creat-
ing one new active record and changing the state of another
active record to being expired.
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Figure 2: The flow of data during its lifetime. It
begins in the active state. Before it is deleted and
becomes expired it will often be retained as DB-slack
and/or FS-slack.

After expiration, a tuple can be either removed, or it can
continue to exist as slack data. In the latter case, we can
further distinguish whether it is DB-slack or FS-slack.

Applying this terminology to record t5 in Figure 1 we
say t5 is active in state (1). After deletion, it is expired, in
states (2-4). Record t5 exists as DB-slack in states (2) and
(3). Then, as a result of the vacuum command, it is moved
to FS-slack in state (4).

We illustrate the flow of data in table storage during its
lifetime by the state diagram in Figure 2. It shows possi-
ble transitions of data from its active state. Ideally, in a
forensically transparent system, active data would immedi-
ately become removed upon deletion, following the arrow
along the bottom of the diagram. This rarely happens in
the systems we studied. As mentioned above, some updates
overwrite data, and in that case, data is removed as soon
as it expires. But in most other cases, data follows a differ-
ent path in the diagram. Deletion and updates that expand
variable length fields both result in expired data that is pre-
served as DB-slack, shown by the upward arrow leaving the
active state in Figure 2.

DB-slack may persist during the standard operation of a
database system (we measure this extensively in Section 5).
It may later become removed under two conditions. First,
insertions applied to the database may overwrite DB-slack.
Second, the vacuum procedure may reorganize records in
the file, overwriting some DB-slack. The vacuum procedure,
however, is complex. It may return allocated file space to
the file system, and no database system we study removes
data before doing so. Thus, DB-slack, instead of becom-
ing removed, can become FS-slack data. In fact, we have
discovered that in the course of reorganizing pages of data-
base storage, active records are packed together by copy-
ing records within and across pages. This means that the
vacuum procedure can result in retention of active data in
unallocated spaces on the disk. If this data gets deleted at
a later point in time, it will become DB-slack or FS-slack
(as in Example 4.1), even if the allocated copy of the data
is removed.

Finally, FS-slack can become removed if the block is allo-
cated to a new process and overwritten, or as the result of
active file system sanitization, if it is performed.

With access to the file system, the investigator or adver-
sary will find all expired data in DB-slack and all expired
data in FS-slack (in addition to the active data present
in table storage). The distinction between DB-slack and

FS-slack is important, however. DB-slack exists in files
allocated to the database system. It therefore cannot be
removed by file system sanitization techniques or by us-
ing a file system with secure deletion [3]. We are primar-
ily focused on sources of retention in DB-slack, which re-
quire solutions in the database system. We are also inter-
ested in how and when databases create FS-slack, although
we believe it should be removed through file system tech-
niques.

Note finally that, while some database systems support
storage on “raw” disk partitions, we focus on storage man-
aged by the filesystem because it is the default behavior
in all systems studied, and because three of our systems
(PostreSQL, MySQL (MyISAM), and SQLite) do not sup-
port raw disks. Further, some have suggested that the com-
plexities of administering raw disks and the increased use
of networked storage services make raw disk use less advan-
tageous for a vast majority of applications [1]. We do not
expect raw disk use to appreciably change the results and
techniques presented here.

4.2 Forensic analysis of the transaction log
The transaction log is an essential component of any data-

base used to provide recovery from transaction and system
failure. Write-ahead logging is the most common strategy
[34]. Update records in the log include before- and after-
images of modified data pages. For periods of time covered
by the log, prior states of a database can be reconstructed,
and a wealth of sensitive data will be retained.

Currently, the only bounds on data retention in the log
result from resource constraints of the disk. Transaction
logs are often implemented as circular files where records
are written sequentially. As the file grows, it wraps around,
overwriting old records. The amount of time data persists
in the transaction log is difficult to predict, even for stable
workloads. It will depend on the capacity of the log file, the
rate of updates, the log space required per update, and the
frequency of checkpointing. A large enterprise with heavy
transaction processing could cycle its log file in a few days
or once per day. In other settings, logs could easily contain
months of historical data, much of which is expired but still
recoverable.

To meet our transparency requirements, data should be
completely deleted as soon as it is no longer needed for recov-
ery. It is not hard to identify portions of the log that will
never be used by the recovery manager and can be freely
deleted without interfering with legitimate recovery prac-
tices. We propose techniques for efficient log expunction in
Section 6.

4.3 Forensic analysis of indexes
The disk representation of B+tree indexes can reveal ex-

pired data and information about the history of operations
that led to the current state of the database. There are two
sources of data recovery from indexes.

First, logically deleted sort keys can sometimes persist in
the internal nodes. For example, in MySQL and PostgreSQL
we found that when entries in B+tree nodes are deleted,
they are not overwritten, and that merging of B+tree nodes
results in the logical deletion of B+tree nodes without their
removal. This type of data retention is similar to DB-slack,
the slack data in table storage. We return to this issue in
Section 6 in the context of MySQL.



Database System PostgreSQL MySQL IBM DB2 SQLite
Table format default MyISAM InnoDB default default

DELETE physically overwrites no yes no no no
DELETE creates free space no yes yes yes yes
UPDATE always preserves past value yes no no no no
UPDATE/short preserves residual yes no yes yes yes
UPDATE/long preserves past data yes yes yes yes yes
INSERT attempts to overwrite no yes yes yes yes
UPDATE to NULL overwrites no yes no no yes
VACUUM automatic no no possible no possible

Table 1: Recovery properties of relational storage for three client-server databases (PostgreSQL, MySQL,
IBM DB2) and one embedded database (SQLite).

Second, B+trees have standard deterministic procedures
for insertion and deletion. It is therefore possible to infer,
from the structure of a B+tree, partial information about
the sequence of insertions and deletions that led to the cur-
rent state of the database. For example, if a sequence of
items are inserted into a B+tree in ascending order, the re-
sulting tree will be different than the tree formed by the
same items inserted in descending order. The degree to
which data structures reveal information about their past
states, as well as the design of so-called “history-independent”
data structures, has been analyzed before [30, 27] (although
not specifically for B+trees in databases). Despite the fact
that B+trees are not history-independent, the shape of a
B+tree will almost never give exact information about past
operations. Instead, a forensic analyst would only be able
to determine that certain sequences of operations were im-
possible, leaving many equally likely possibilities. Further,
the degree of certainty about past operations diminishes as
the fan-out of the B+tree increases. (In the extreme, if the
fan-out is large enough so that all keys are stored in the
root node, then no history is revealed, since keys are stored
in sorted order.) B+trees in databases commonly have high
fan-out, so this will tend to result in less precise inference.

4.4 Other forensic targets
Temporary tables
As the database system executes queries, temporary rela-
tions may be constructed automatically and written to disk
to speed later query execution. SQL queries that include
ORDER BY or GROUP BY clauses require sorting, which
will be performed by constructing a temporary relation con-
taining the attributes being sorted. As a representative ex-
ample, in MySQL, each temporary relation is written as a
separate file to a specified temporary directory. No explicit
deletion is performed until the database server process is
terminated. At this point the files will be deleted by the
filesystem, but will remain as FS-slack. This is a notable
case in which the workload of select queries may determine
forensic recoverability, distinct from the workload of delete,
update, and insert queries studied in Section 5.

Record identifiers
Many systems introduce tuple identifier fields into the schema
of tables. These identifiers are often generated automatically
using sequential numbering. They can be retrieved and an-
alyzed by users to trace the order of insertions and deletions
in the database — information not available through the
intended interface.

5. FORENSIC RECOVERY EXPERIMENTS
FOR TABLE STORAGE

In this section, we examine the operation of four database
systems to measure the amount of data that is recoverable
through forensic analysis of table storage. Our study focuses
on PostgreSQL (version 7.4.8), MySQL (version 5.0.24a),
IBM DB2 (version 8.1.0), and the SQLite embedded data-
base (version 3.2.2). We study two table storage formats
for the MySQL database (called MyISAM and InnoDB2),
resulting in a total of five test cases.

Our findings show considerable retention of data in both
DB-slack and FS-slack, interesting differences between sys-
tems, and key factors that impact data retention such as
clustering and the frequency of vacuum. In addition to the
absolute quantity of data, we also study the lifetime of data
in DB-slack.

5.1 Forensic properties of different systems
Table 1 compares the deletion, update, insert, and vacuum

behavior of the five systems we examined. As the table
shows, we found that InnoDB (MySQL), DB2, and SQLite
share three important behaviors: data is deleted logically,
and not removed ; previous values of a record are in many
cases completely overwritten during an update; and deleted
tuples are freed so that subsequent insertions may overwrite
the data.

Freeing tuples to enable later overwriting has important
consequences for forensic recovery. DB2 frees tuples imme-
diately upon deletion. InnoDB (MySQL) and PostgreSQL
use multi-version concurrency control, which forces them to
retain deleted records for some time to provide a consistent
view to running transactions. In InnoDB, a continuously-
running purge thread frees tuples after they are expired, be-
cause they are no longer needed. PostgreSQL never frees
records until vacuum is performed. This is not a require-
ment of multi-version concurrency control, but instead a
legacy feature of the storage manager. PostgreSQL origi-
nally supported versioning, in which all past states of the
database are preserved [43]. The versioning features have
since been deprecated, but there is still no active thread to
free deleted tuples. During vacuum some expired tuples are
overwritten, space in table storage is freed, and some data
is moved to FS-slack. MyISAM (MySQL) is the sole stor-
age format that removes data on deletion. However, once
vacuum behavior is taken into account, we will see that My-
ISAM moves considerable data into FS-slack.

2MyISAM is the default format, and it is recognized as fast
for simpler applications. InnoDB is an advanced table for-
mat offering ACID compliance.



 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  100  200  300  400  500

# 
re

co
rd

s 
in

 D
B

-s
la

ck

operations (x100)

Expired records
PostgreSQL

MySQL (InnoDB)
SQLite

DB2
MySQL (MyISAM)

Figure 3: DB-slack data of the different data-
base systems (default configuration and without vac-
uum). The Expired and PostgreSQL lines have the
same values.

5.2 Workload experiments
We repeated several experiments on each of the five sys-

tems using Linux and running the ext2 [7] file system. Each
experiment is initialized with a database of 12,500 variable-
length records. The workload consists of 50,000 database
modifications, in random order. Of these, 45% are inser-
tions, 35% are deletions, and 20% are updates to existing
records. Updates are equally likely to increase or decrease
the size of the modified record. After every 100 opera-
tions, we measured the number of database records found
in DB-slack and FS-slack using a set of custom tools. These
programs bypass the SQL interface of the database system
by opening the table storage files of the hosting filesystem
image and searching for database records in the binary data.
In actuality, tuples in the DB-slack or FS-slack may be fully
or partrially recoverable. Our results conservatively report
only fully recoverable tuples.

In the following, we are sometimes forced by space limi-
tations to present a subset of results for a particular issue.
We never omit results that are inconsistent with what we
have chosen to present.

Default behavior of five storage managers
Figure 3 shows the number of tuples recovered from DB-slack
when our randomized workload is run using five different
systems in their default configuration. The figure also in-
cludes the total number of expired records, which increases
linearly as deletes and updates are executed. It represents
the maximum amount of data that could be potentially re-
covered. We see that PostgreSQL keeps 100% of the ex-
pired records in the DB-slack: its trend line is superimposed
on that of the expired records. At the other extreme, My-
ISAM (MySQL) shows no DB-slack. The recovery rates for
InnoDB (MySQL), SQLite, and DB2 are between these ex-
tremes, with the recovery rate for DB2 fairly low at about
400–500 tuples throughout the workload.

These results assess forensic recoverability for a small-
scale synthetic workload in the default configuration of the
databases. We found that scaling the database in size did
not significantly change these results. This is because slack
is created as a result of operations on records and is not in-
fluenced by the number of pages. The rates of deletion and
update also impact data retention in table storage. However,
the effects of changes in the deletion rate were dominated
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Figure 4: The impact of clustering and sort key dis-
tribution on the retention of data in DB-slack for
DB2 and InnoDB (MySQL).

by other factors like the vacuum operation, or changes in
sort-key distribution and clustering, as explained next.

Impact of clustered table storage
Clustering records based on a sort key is a common feature
of database storage. Because clustering imposes a constraint
on the placement of new records in table storage, it has a
significant impact on data retention. For example, if a table
is stored using a clustered B+tree and inserted records tend
to increase with respect to the sort key, then records must
always be added to pages at the end of the file. Records that
are deleted from earlier pages in the file will enter DB-slack
and are unlikely to be overwritten, unless counteractive mea-
sures like the execution of vacuum are taken.

It is not uncommon for insertions to be monotonically in-
creasing with respect to the clustered sort key of a B+tree in-
dex. This may occur because the database designer chooses
automatically increasing identifiers for their tables, includ-
ing time and date or a unique event number. In fact, InnoDB
(MySQL) builds a clustered index by default. If no primary
key is defined on the table, then InnoDB clusters records
using an internal identifier that is strictly increasing. Thus
inserts are sequential with respect to the clustered order.

It is these effects that explain the substantial difference in
recoverability between InnoDB and DB2 in Figure 3: DB2
by default does not cluster records, whereas InnoDB by
default clusters inserted records using a sequential index.
We compare these two systems in Figure 4 for workloads
of sequential inserts/updates and randomly distributed in-
serts/updates (deletes are random in both cases). Sequential
inserts have a dramatic effect in both systems: the amount
of DB-slack is more than doubled for InnoDB and is even
greater for DB2 where there was very little before. Although
the random and sequential inserts are characteristics that
could occur in real workloads, many applications will gener-
ate workloads that fall between these two extremes.

Vacuum and file system slack
All the systems we studied offer a vacuum command in-
tended to periodically reorganize table storage. The vac-
uum operation has two important effects on data reten-
tion. First, it reorganizes tuples, overwriting many, and
it will tend to reduce DB-slack. Second, during reorganiza-
tion most vacuum procedures release pages to the filesystem
that contain expired or active tuples; this process generates
FS-slack.
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Figure 5: The impact of vacuum on DB-slack and
FS-slack for PostgreSQL and InnoDB (MySQL).

Figures 5 and 6 show the amount of DB-slack with and
without vacuum for four of the systems. The vacuum oper-
ation is called every 5,000 operations. The impact of vac-
uum on DB-slack is largely similar across systems. After
each vacuum, the DB-slack is removed completely, and as
the workload continues, new DB-slack accumulates. DB2
displayed this behavior as well.

Figures 5 and 6 also show the creation of FS-slack as a
result of vacuum. Page reorganization during vacuum is
generally not done in-place. Instead it is often more effi-
cient to scan the existing fragmented pages and write en-
tirely new pages. This implementation of vacuum often
leads to FS-slack, when the old pages are released to the
filesystem. For example, SQLite and MyISAM (MySQL)
are examples of systems that generate substantial filesys-
tem slack through the implementation of their vacuum pro-
cedures. SQLite performs vacuum by rebuilding the table
in newly allocated storage space. After the operation, freed
pages are returned back to the filesystem creating FS-slack
consisting of both active and expired tuples. Both the My-
ISAM and SQLite formats return free space back to the file
system.

Vacuum in DB2 reduced DB-slack but, unlike the other
systems, did not create FS-slack as a result. We suspect
that deallocated pages that result from vacuum remain in
the DB2 tablespace and are not released to the filesystem.
This means the data may remain in DB-slack, but if so,
it is not in a form captured by our forensic recovery tools.
Without access to the source code it is difficult to verify this
hypothesis.
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Figure 6: The impact of vacuum on DB-slack and
FS-slack for SQLite and MyISAM (MySQL).

Lifetime of recoverable data
In addition to the quantity of data recovered, the duration of
data retention is also an aspect of the privacy threat posed
by forensic analysis. We measured the period of time each
tuple spends in DB-slack before being removed by vacuum or
overwritten by an insertion. The results of the experiments
are shown in Figure 7, which plots the complementary CDF
of the age of records in DB-slack at the end of the 50,000-step
workload for InnoDB (MySQL). A point (x, y) in this graph
represents the percentage of tuples y that survive at least
x operations. About 40% of the tuples in DB-slack survive
25,000 operations when vacuum is not used. With vacuum,
the graph drops more steeply, showing that the records in
DB-slack are younger on average. The oldest records sur-
vived for about 25,000 operations using vacuum. Inspection
of the InnoDB source code suggests that DB-slack is always
overwritten after this number of operations because of the
size of the allocated tablespace, required table size in our
experiments, and the reuse of freed pages after sequential
vacuums. Overall, analysis of the DB-slack duration for the
other database systems showed similar results.

These results suggest that database slack could persist
for a significant period of time. In these results lifetime is
measured in the number of operations. Translating this into
hours, weeks or months would depend on the frequency of
operations in the system, and would vary greatly by appli-
cation.

The lifetime of data moved to FS-slack is harder to mea-
sure and harder to predict. This data exists in unallocated
file system space. Its lifetime depends on the file system pol-
icy for allocating space to new processes, and on the overall
usage pattern of the file system. Accurate measurement of
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its lifetime would require modeling file system use of all pro-
cesses running along with the database, and is beyond the
scope of this paper.

Conclusions
Sections 4 and 5 show clearly that the investigated database
systems violate our desiderata for forensic transparency (see
Section 3) by retaining expired data. While the amount of
data retained and the lifetime of retention can vary consider-
ably, our results show that there are common configurations
that lead to significant retention of expired data. At a high
level, we have seen that DB-slack acts like an unmanaged
store of expired data, inaccessible from the intended inter-
face. In most cases, that store appears to have a constant
capacity that is determined by configuration parameters and
clustering constraints. FS-slack acts as an additional un-
managed store, but is often larger.

Our experiments are not exhaustive. We have attempted
to present the most important factors impacting forensic re-
tention, using a simple workload that permits effective anal-
ysis of the results. Due to the complicated interaction of ef-
fects of the workload, clustering, frequency of vacuum, and
system configuration, the actual retention of data for a par-
ticular database application would require targeted analysis.

6. MAKING DATABASE SYSTEMS
TRANSPARENT

In this section, we present specific techniques for mini-
mizing data retention and increasing forensic transparency.
We focus on what we consider to be the two most impor-
tant threats to privacy in database systems: slack data in
table storage and the uncontrolled persistence of data in the
transaction log.

We begin by comparing different methods for destroying
data and then present, in Section 6.1, our implementation of
a modified InnoDB storage manager that removes expired
and unnecessary data remnants securely from DB-slack. We
chose to modify the InnoDB storage manager because it
seemed to us closest to “industrial strength” of the available
open-source implementations (in fact it is owned by Oracle,
and dually licensed). In addition, the forensic properties
of InnoDB described in the previous section seemed gener-
ally representative of other systems and had more DB-slack
than others, excluding PostgreSQL. Our performance results
show these modifications do not appreciably affect running
time, and additional experiments show quantitatively the

removal of DB-slack. In Section 6.2, we propose an efficient
method for removing expired data from the transaction log.

Note that our focus in this section is on the removal of
DB-slack. Methods for removing file system slack have been
studied by others [17, 13, 3, 20, 5].

Methods for destroying data
Recall from Section 2 that there are two basic strategies for
destroying data stored on disk. The first is to overwrite data,
which can be time consuming for large blocks of storage.
The second stores data in an encrypted form, which enables
quick destruction of data by overwriting the key [5].

However, in this latter approach, during the lifetime of
the data, every read requires decryption and every write or
update requires encryption. Each technique is most suitable
for different database components.

For removal of data from table storage, we believe over-
writing is the best approach, and it is the technique we im-
plemented in MySQL, as described below. An encryption-
based approach is likely to introduce severe performance and
management penalties when applied to table storage. Since
secure deletion takes place with the granularity of an in-
dividual record, distinct keys must be associated with each
record; otherwise old data could be recovered while portions
of the table still exist. The resulting number of keys used in
the system is a storage and management burden, and scans
of table pages could be severely slowed down by repeated
decryptions.

Conversely, encryption is a desirable approach for removal
of data from the transaction log since the log records are
written once, requiring only a single encryption operation.
Decryption is usually only necessary on abort or system fail-
ure, and repeated decryption is very unlikely.

6.1 Implementing transparent table
storage for MySQL

Our investigation of the InnoDB source code revealed that
the three causes of DB-slack are the deletion, B+tree, and
vacuum functions.

• InnoDB deletes tuples without removing the data; tu-
ples are simply marked as deleted.

• InnoDB stores all table data in a B+Tree data struc-
ture. The functions that modify the B+Tree often
leave copies of database records in unused parts of the
B+Tree. For example, when a page is split, half the
records are copied to the new page and the old storage
space is marked as available to the database (but not
the filesystem) without being overwritten. This pro-
cess allows active tuples to migrate into the DB-slack,
and even if the tuples are later securely deleted, these
now-expired copies will not be overwritten.

• The vacuum function also rearranges the B+Tree, caus-
ing the creation of DB-slack when stale copies of data
are not overwritten. Additionally, vacuum can release
storage to the file system, which can cause FS-slack.

The contribution of each of the three functions to DB-slack
is dependent on the workload of a database and the fre-
quency of calls to vacuum. Securing table storage therefore
requires addressing each of these issues. We investigate here
only secure versions of deletion and B+Tree operations be-
cause they are critical to system performance. We leave
securing vacuum for future work.



Securing deletion
Because InnoDB uses multi-version concurrency control, tu-
ples cannot simply be overwritten after a deletion. The sys-
tem first marks tuples scheduled for deletion. When the
last transaction whose snapshot still includes that tuple has
ended, the tuple is expired and put on a free list by the so-
called purge thread. At that point, it is possible that it will
be overwritten if another tuple is inserted or updated or if
the page is reorganized.

We modified the purge thread so that tuples are over-
written as they are put on the free list. Because the free
list is part of the page organization, this approach incurs
virtually no additional disk I/O operations, only a call to
memset(). It also does not impact the amount of data that
must be written to log records. The drawback is that the
purge thread does not typically execute immediately after
a deleted tuple becomes expired. Instead, the purge thread
might start to lag behind if the system is under high load.
There are configuration options in MySQL to put an upper
bound on the lag of the purge thread, but imposing a tight
upper bound comes at the price of a possible performance
degradation. Nevertheless, in most settings, we expect this
lag would be quite small—seconds or minutes, but not more.

Securing B-Tree operations
Securing the B+tree implementation required changes to
the code for insert, delete, and update. For each of these
functions, we modified any operations that copied, purged,
or reorganized the B+tree and used overwriting to remove
obsolete data. Because our modifications operate on pages
that are already loaded in memory and are updated by other
mechanisms in the code, we incurred no additional I/O op-
erations. We found that the modified code ran at virtually
the same speed as the unmodified code, as we discuss below.

Impact on transparency
To measure the decrease in DB-slack produced by our modi-
fied InnoDB, we re-ran our experiments from Section 5. The
results are shown in Figure 8. The “original” line is the same
as the MySQL (InnoDB) result in Figure 3, although the
scale is changed to offer a better view of the “secure” trend
line. With our modifications, there is virtually no DB-slack
data left. Remaining slack (barely visible in the figure) is
the result of either the purge thread lagging slightly behind
or because the database system’s buffer manager had not
yet flushed the changed page to disk.

Taking our transparency criteria from Section 3.2 into
consideration, we conclude that for table storage, our modi-
fied version of InnoDB indeed satisfies our Desiderata 2 and
3 for fully recoverable records.

Performance impact
To evaluate the performance impact of our modifications to
InnoDB, we measured the running time of an intensive work-
load of 100,000 INSERTS and 100,000 DELETES, executed
as a stored procedure. At the time of the experiment, no
other jobs were running on our Linux system. We repeated
this experiment twenty times each for the unmodified and
modified versions of InnoDB. There were no substantive dif-
ferences in the execution times. The average running time of
the the unmodified InnoDB was 51.11 seconds with a stan-
dard deviation of 0.06 seconds. The average running time
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Figure 8: A comparison of tuples retained in
DB-slack in InnoDB (MySQL) before and after the
implementation of our secure deletion techniques.

of our secure version of InnoDB was 51.07 seconds with a
standard deviation of 0.09 seconds, and its minimum (50.91
seconds) and maximum (51.26 seconds) running times were
within one standard deviation of the unmodified version.

6.2 Efficient log expunction
The age and quantity of data retained in the transaction

log is bounded only by physical constraints of the disk, as
we noted in Section 4. Because retention is highly depen-
dent on the workload, it is difficult to predict and may vary
widely over time. Moreover, as transactions run and the log
grows, older parts of the log will never be used for recovery
and cease to serve any legitimate purpose In the remain-
der of this section, we describe techniques for the efficient
expunction of data from the transaction log that meet the
transparency desiderata that we described in Section 3.2.
We focus on write-ahead logging and the ARIES [28] recov-
ery algorithm.

Candidates for expunction
The transaction log is written sequentially, with new records
written to the log tail. As transactions are processed by the
system, parts of the log cease to serve any purpose for re-
covery. The log can protect against up to three modes of
failure, and the recovery configuration determines the point
at which a log record can be safely removed. The transac-
tion log is commonly used to recover from transaction failure
and system failure. Transaction failure occurs when a trans-
action halts due to an unavailable resource, bad input, or a
constraint violation, among other reasons. A system fail-
ure involves the loss of volatile memory. The log may also
be used to recover from media failure, in which a hardware
malfunction causes loss of data on stable storage.

The status of records in the log changes from possibly
useful to certainly useless upon commit, checkpoint, or fuzzy
dump actions. When a transaction commits, it will never be
undone; and at that point, before-images corresponding to
the transaction stored in log records are no longer needed.
When a (fuzzy) checkpoint is taken, updates prior to the
penultimate checkpoint will never be used to recover from
transaction or system failure. If the log is also being used
for media recovery then when fuzzy dumps are performed,
the log records prior to the dump are no longer needed for
recovery from media failure.



A naive strategy for log expunction is to physically over-
write useless log data. This approach is expensive, as it
requires a trailing process to continuously read and write
pages of the log, deleting data as it becomes expired. In-
stead, we propose to encrypt the log and perform expunction
efficiently by removing the keys used for encryption. This
encryption scheme requires no additional I/O for logging or
recovery.

To simplify our presentation, we first describe an encryp-
tion scheme designed to remove whole log records once they
are no longer needed for recovery from transaction or system
failure. Expunction of records occurs as a consequence of the
checkpoint operation. Similar techniques can be adapted to
finer-grained log expunction; e.g., to remove before-images
on commit. We discuss supporting recovery from media fail-
ure at the end of this section. A system implementing these
techniques would have a guarantee — determined by the
checkpointing frequency — that data is securely removed in
a timely manner.

Using encryption for efficient log expunction
Log records are the basic unit of data written to the log,
and they are typically identified by unique, sequential iden-
tifiers called log sequence numbers (LSN). In our scheme,
the content of each log record is encrypted under a different
cryptographic key. For a log record with LSN l, we denote
the cryptographic key used to encrypt the record by Kl. By
removing the key Kl, we effectively expunge log record l,
but without having to read or write the page that stores the
record (assuming no weakness exists in the cryptographic
algorithm).

Log record keys are constructed as an ordered sequence
using a hash chain [25, 36]. On initiation of the log, a ran-
dom seed value s is chosen. The key of the first log record,
K1, is set to H(s), where H(·) is a cryptographic hash func-
tion (e.g., SHA-256 [39]). The key for the next log record
is computed by applying H(·) to the current key. In gen-
eral, we have Kn = H(Kn−1). A key Kn can be efficiently
computed by repeated hashing from any previous key as
Hn−i(Ki), where i < n. However, assuming H is pre-image
resistant, it is computationally infeasible to compute any
earlier key from a later key. For example, Kn−1 cannot be
feasibly computed from Kn.

At any point in time, we keep in stable storage exactly one
cryptographic key. This key, denoted Kcurrent, is sufficient
to allow decryption of all needed log records. Log record
expunction is accomplished by a simple operation called key
update, performed at the end of checkpointing. To perform
key update we simply update Kcurrent by overwriting it with
a new key corresponding to a subsequent LSN. For example,
if key update takes Kcurrent = Kn and replaces it with
Kn+i, then each log record with LSN between n and n+i−1
is effectively removed. The records will be present in the
log in encrypted form, but their keys will be lost. Note that
Kcurrent can be stored on the same page as the log records,
because it is not secret and gets overwritten as soon as it
gets invalid.

To ensure that recovery is possible, we must guarantee
two conditions. First, Kcurrent must be available after sys-
tem failure. We guarantee this by storing Kcurrent in the
master log record, which always contains the LSN of the lat-
est begin-checkpoint record. It is already the case that the
master record is written to a special place on disk only af-

ter the end-checkpoint record is written to disk, ensuring
that the fuzzy checkpoint is complete [34, 41]. Second, we
must ensure that the key for any needed log record is com-
putable during recovery. The value of current (i.e., the index
of Kcurrent) must be less than or equal to the earliest LSN
of any log record that could be read during the recovery
procedure. The key update procedure guarantees this by
choosing the new value for Kcurrent equal to the LSN of the
end-checkpoint record of the penultimate checkpoint [4].

The cost of log encryption
The transaction manager is a performance-critical compo-
nent of any database system. Our proposed expunction
scheme performs timely removal of log records without any
special I/O operations. The scheme imposes computational
overhead that we believe will be small on an absolute scale
and is likely to be hidden by higher cost operations com-
mon to transaction management. The implementation and
performance evaluation of our scheme has not been com-
pleted, but in the remainder of the section, we explain the
expected costs of our modifications to transaction processing
algorithms.

To append a new log record to the tail of the log in mem-
ory we compute a new key by hashing and then encrypt the
contents of the log record. A stream cipher is an ideal choice
for the encryption function. Given a key, a stream cipher
generates a pseudo-random stream of bytes. Encryption is
accomplished by XOR of the stream with the plain text.
Decryption is accomplished by XOR with the cipher text.
RC4 [35] is a popular and extremely fast stream cipher, with
a small memory footprint, that encrypts at 120 MB/s on
our experimental system. In addition, the pseudo-random
stream can be computed and cached prior to encryption,
and does not impose a size overhead on the encryption of
small log records due to padding that would be necessary if
we used a block cipher.

The checkpoint operation proceeds normally in our scheme,
encrypting the records it normally writes to the log, and
writing only 16 extra bytes (the value of Kcurrent) along
with the master log record. Since the checkpointing oper-
ation is fairly expensive, this is likely to have a negligible
impact on performance.

During recovery, the current key is read from the master
log record. All keys, up to the key for the last log record
in the log, can be efficiently computed by repeated hash-
ing. (SHA-256 can be repeatedly computed on a 256 bit
key about 700,000 times per second.) The recovery man-
ager then proceeds normally with the analysis phase by de-
crypting log records. Recovery also writes log records, and
therefore will incur the cost of encryption in our scheme.
Again, with modern processing speeds, we believe the com-
putational overhead imposed by key computation and de-
cryption will be dwarfed by the I/O cost of recovery.

If the log is used for recovery from media failure then
the key update procedure described above will result in the
loss of necessary records. This limitation can be easily ad-
dressed by writing a copy of Kcurrent along with backup
records (usually stored on a different disk to ensure inde-
pendent failures). In this case, the transaction log is still
protected from forensic investigation. Finally, we note that
standard techniques can be used to reset the hash chain
seed to improve both the performance and security of this
scheme.



7. CONCLUSIONS
We have demonstrated that database systems fail to re-

move data securely after deletion, contain remnants of past
operations and data in allocated storage, and make numer-
ous redundant copies of data items that can persist in the file
system. As a result, database systems provide a false view
of stored data, which threatens privacy and makes adher-
ence to information handling policies impossible. We have
described a set of transparency principles and modifications
to MySQL internals that improve privacy substantially with
minor performance impact. Our future work will continue to
explore the performance trade-offs of transparency in data-
base systems and explore balancing the competing needs for
accountability and privacy.
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